El-401/ECN/4th Sem/2018/M # **ELECTRICAL CIRCUIT AND NETWORK** Full Marks - 70 Time - Three hours The figures in the margin indicate full marks for the questions. PART-A Marks - 25 Time - One hour Answer all the questions. | 1. | Fill | in the blanks: | 1×10=10 | |----|------|--|---------------------------------------| | | (a) | Norten's theorem can be applie creuit. | d only in | | 5 | (b) | A network having one or more to
of e.m.f is known as ne | han one source | | | (c) | In a parallel RLC circuit, wi | th X ₁ >X ₂ the | circuit behaves as Turn over | (f) | The equation of true power is | |-------|---| | (g) | The ratio of true power by apparent power is called | | (h) | Negative phase angle means | | (i) | In delta connected three phase system, the line voltage = | | · (j) | In the two parallel branches of a parallel circuit, more current will flow through that branch which has impedance. | | Sta | te true or false: 1×10=10 | | | Virchhoff's first law is based on the principle of law of conservation of charge. | | (b) | The total resistance in a series circuit is always less than the least resistor. | | (c) | The voltages across all components in a parallel circuit are equal. | (2) 146/E1-401/ECN (d) Admittance is equal to the reciprocals of (e) Number of cycles per second is called - (d) Thevenin's resistance is found by removing voltage sources along with their internal resistance. - (e) An ideal voltage source should have zero source resistance. - (f) The superposition theorem requires as many circuits to be solved as there are sources. - (g) The time period of a wave is same as frequency. - (h) Form factor is the ratio of r.m.s value and average value. - (i) At series resonance, applied voltage V = voltage across R - (j) The power factor of pure capacitive circuit is 1. - 3. Multiple choice questions: $1 \times 5 = 5$ - (a) In a star-connected system, the current nowing through the line is: - (i) Greater than the phase current - (ii) Equal to the phase current - (iii) Lesser than the phase current - (iv) None of these. | (b) Ohmic value of capacitive coil is called: | |---| | (i) Impedance | | (ii) Resistance | | (iii) Capacitive reactance | | (iv) Inductive reactance | | (c) In a three phase AC circuit, the sum of all three generated voltage is: | | (i) Infinite | | (ii) One | | (iii) Zero | | (iv) None of the above. | | (d) In case of inductive circuit, frequency is proportional to the inductive reactance. | | (i) directly | | (ii) inversely | | (iii) No effect | | (e) Unit of admittance is: | (i) Ohm (ii) Siemens (iii) Henry (iv) Farad. ## PART-B ### Marks - 45 ### Time - Two hours Answer any three questions. - 4. (a) Define parameters, non-linear circuit, bilateral circuit and active network. - (b) A circuit consisting of three resistances of 12Ω , 18Ω and 36Ω respectively joined in parallel is connected in series with a fourth resistance R. The whole circuit is supplied at 60V and it is found the power dissipated in 12Ω resistance is 36 W. Determine the value of "R" and power absorbed in the parallel group. - 5. (a) Prove the reciprocity theorem. - (b) Find the voltage across 10 ohm resistor by constructing Norton's equivalent circuit in the squee to the left of terminals x-y. 10 146/E1-401/ECN (5) [Turn over 5 - 6. (a) A coil of resistance 12Ω and inductive reactance of 25Ω is connected in series with a capacitive reactance of 15Ω . The combination is connected to a supply of 230V, 50 Hz. Find - (i) Circuit impedance - (ii) Current - (iii) Power consumed. - (b) Define RMS value, average value and form factor. - 7. In a series parallel circuit the parallel branches A and B are in series with C. The impedances are $Z_A = 5 + j3$, $Z_B = 9 j7$ and $Z_C = 6 + j5$. If the voltage applied to the circuit is 180V at 50 Hz. calculate: - (a) Current I_A, I_B and I_C. - (b) The total power factor for the whole circuit. - 8. Write short notes on any three: $5 \times 3 = 15$ - (a) Maximum power transfer theorem - (b) R-L-C series circuit - (c) Relationship between line current and phase current of three phase star-connect system. - (d) Transient response on a R-L circuit.