Total No. of printed pages $=5$

Co-401/DSUC/4th Sem/Comp/2017/M

DATA STRUCTURE USING C
Full Marks - 70
Pass Marks - 28

Time - Three hours
The figures in the margin indict te cill marks for the questigh

Answer question No. 1 and any four questions from the rest.

1. (a) State true or alse :
$1 \times 5=5$
(i) 170 operation in a stack can cause oveflow.
(ii) A tree is also a graph.
(iii) In postorder traversal of tree, the root node is visited at last.
(iv) The name of an array with no subscript always refers to the address of the initial array element.
(v) Overflow will occur with linked list when AVAIL = NULL and there is an insertion.
(b) Fill up the blanks :
(i) In linked list linear order is given by means of \qquad .
(ii) Recursion uses
 internal data structure.
(iii) The maximum evel of any leaf in the tree is alsa hnown as \qquad of the tree.
(iv) Spare complexity of an algorithm indicates its \qquad requirement.
(v) A graph may be represented using \qquad .

Write an algorithm for the Quicksort and find its complexity for the worst case.
(b) What is an array ? Write algorithms for inserting and deleting elements in the array.
3. (a) Consider the algebraic expression $E=(2 x+y)(5 a-b)^{3} \quad 3+3=6$
(i) Draw the tree T which corresponds to the expression E .
(ii) Find the prefix polish expression P which is equivalent to E and find the proorter of T.
(b) Consider the following arithmetic expression P, written in postfix notation 4
$\mathrm{P}: 12,7,3,-, 1,2,1,3,+$
Translate P into its equi acent infix expression and evaluate it.
(c) Write the algerith for Linear Search and find its compiesity: 5
4. (a) Suppose il ST be a linked list in memory. Wie algorithm which deletes the last ande from LIST.
(1) A binary tree T has 9 nodes. The inorder and preorder traversal of T yield the following sequence of nodes :
Inorder : E A C \quad K \quad F $\quad H \quad D \quad B \quad G$
Preorder : F A E K C D H G B
Draw the tree.
5. (a) Let S and T be character variables such that
$\mathrm{S}=$ 'JOHN PAUL JONES'
$\mathrm{T}=$ 'A THING OF BEAUTY IS A JCY
FOREVER'
Determine the following :
(i) SUBSTRING(S,4,8) and SUBST $/$ ING ($\mathrm{T}, 10,5$)
(ii) INDEX(S, 'JO')
(iii) SUBSTRING(T, 2, 3) / 'GIVEN'
(iv) $\operatorname{INSERT}(\Omega 1,4 N D$ ')
(v) DELETE (6,5)
(vi) RRPLACE 8, 'PAUL,',DAVID')
(b) State Jower of Hanoi problem. Write an algyrithm that gives a recursive solution to the rowers of Hanoi problem for n disks. Illustrate it for $n=4$ (i.e. 4 disk) $2+3+3=8$
6. (a) Suppose Q is an arithmetic expression written in infix notation. Write an algorithm to find the equivalent postfix expression P . 5
(b) Write algorithms for BFS and DFS on a graph.
7. Write short notes on any three : $5 \times 3=15$
(i) Pointers
(ii) Two-way List
(iii) Algorithm Complexity
(iv) Priority Queue
(v) Heap
(vi) Radix Sort.

